EPIDEMIOLOGY

The study of the **distributions** (rates) and **determinants** (causes) of diseases and injuries in human populations.

Cholera epidemic and water sources in London, 1854*

Water supplier	Houses	Cholera deaths	Rate per 10,000 houses
Southward & Vauxhall Co.	40,046	1253	315
Lambeth Co.	26,107	98	37
Others	256,423	1422	59

*Gardner M. Arch Environ Health 1988;43:102-8

Types of epidemiologic studies

- Case series
- Cross-sectional
- Prospective cohort
- Retrospective cohort
- Case-control
- Case-crossover (variant of casecontrol)

Case series

Report of case cluster, usually rare disease

Example: Angiosarcoma of the liver in workers in polyvinylchoride manufacturing plant (Creech and Johnson, 1974)

Advantages of case series reports

- May identify new occupational or environmental hazard (e.g., vinyl chloride and angiosarcoma, asbestos and mesothelioma)
- Can lead to intervention

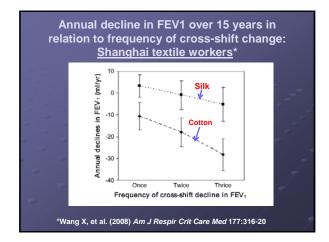
Limitations of case series reports

- Only anecdotal information (reporting bias?)
- May be spurious cluster ("Texas sharpshooter phenomenon")

Prospective cohort studies

Follow-up of exposed and nonexposed cohorts, with comparisons of disease rates of changes in physiological function

			nductor	
	Spontaneou	is abortions		
No. of pregnancies	Number	Percent	RR (95%CI)	
3	3	100.0	2.0 (1.5-2.8)	
14	8	57.1	1.1 (0.7-2.0)	
38	19	50.0	1.0 [ref]	
	No. of pregnancies 3 14	Industry worl Spontaneou No. of pregnancies 3 3 3 14	industry workers* Spontaneous abortions No. of pregnancies Number Percent 3 3 100.0 14 8 57.1	No. of pregnancies Number Percent RR (95%Cl) 3 3 100.0 2.0 (1.5-2.8) 14 8 57.1 1.1 (0.7-2.0)



Longitudinal study of lung function change in <u>Shanghai textile workers</u>*

- <u>Study groups</u>: Cotton factory workers exposed to endotoxin (n=408) and silk factory reference workers (n=417)
- Follow-up 1981-2001
- Outcomes: Longitudinal decline in lung function (FEV1), cross-shift and annually, and respiratory symptoms
- *Wang X, et al. (2008) Am J Respir Crit Care Med 177:316-20

	Cotton		Silk			
	Ν	ΔFEV_1 (ml)	ΔFEV ₁ (%)	n	ΔFEV_1 (ml)	ΔFEV ₁ (%)
1981	391	-57.9 (154.9)*	-1.98 (5.49)*	376	-5.6 (131.9)	-0.02 (4.82
1986	284	-47.8 (135.3)*	-1.77 (6.62)*	307	-26.1 (115.9)	-0.87 (4.22
1992	222	-54.2 (120.9) [‡]	-1.87 (4.42) [§]	225	-20.2 (98.9)	-0.69 (3.78
1996	119	-66.6 (141.5)	-2.15 (5.51)	0	_	_
Cal * P † P ‡ P	<pre>culation < 0.0 = 0.0 = 0.0</pre>	4.	all available dat	ta at e		

Advantages of prospective cohort studies

- Logic similar to experiment
- Well suited to short-term health outcomes
- Eliminates prevalent cases at outset of follow-up

Limitations of prospective <u>cohort studies</u>

- Not practical for most studies of chronic diseases (need very large cohort and long follow-up)
- Practical difficulties updating exposure data prospectively

Historical cohort studies

- Enumeration of cohort at a point in the past
- Follow-up to the present for health outcome incidence

Cause of death	Observed	Expected ⁺	Obs/Exp
All causes	591	644.6	0.92
Circulatory diseases	139	158.3	0.88
Respiratory diseases	22	29.21	0.75
Cancers (all sites)	209	203.1	1.03
lung cancer	61	47.22	1.29
pleural cancer	3	1.39	2.16
larynx cancer	7	12.80	0.55
esophagus cancer	19	15.30	1.24
oral cancer	23	19.51	1.18
bladder cancer	4	5.43	0.74

Lung cancer ar	nong U.S	<u>S. steelv</u>	<u>vorkers*</u>	
Job category/ Duration (yrs)	Obs	Exp	Obs / Exp	
All coke plants/ ≥ 5	29	13.6	2.1	
Non-coke oven/ ≥ 5	1	5.3	0.2	
All coke oven / ≥5	27	7.6	3.6	
Coke oven, never topside /<5	6	4.1	1.5	
Coke oven, topside / <5	6	2.1	2.9	
Coke oven, topside / ≥5	15	1.5	10.0	
Lloyd W, J Occup Med 1971;	13:53-68			

Advantages of historical <u>cohort studies</u>

- Permits study of rare, chronic diseases (follow-up over historical time)
- Exposure data collection simplified relative to prospective follow-up

Limitations of historical <u>cohort studies</u>

- Incomplete cohort enumeration common problem
- Historical exposure data often sparse or absent
- Data on potential non-occupational confounders seldom available

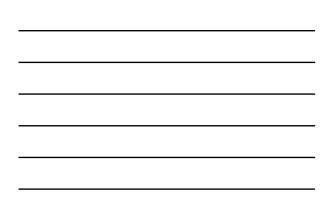
Case-control design

Comparison of past exposures of persons with index disease (cases) with exposures of persons free of index disease at times when cases occurred (controls)

Case-control studies

- Nested within defined occupational cohort
- Community (registry-) based

Nested case-control study of lung cancer and diesel exhaust among US underground <u>non-metal miners</u>*


Cumulative REC exposure (µg/m3-yrs)**	Cases	Controls	OR (95% Cl)***
0-<81	29	92	1.0 [ref]
81->325	29	52	2.5 (1.0-6.0)
325-<878	29	69	2.4 (1.0-5.8)
<u>></u> 878	29	51	5.1 (1.9-13.9)
2		2	

*Silverman DT et al. J Natl Cancer Inst 2012:104:1-14

Respirable elemental carbon, lagged 15 years *Odds ratio (95% confidence interval), adjusted for age, smoking, history of non-cancer resp. disease

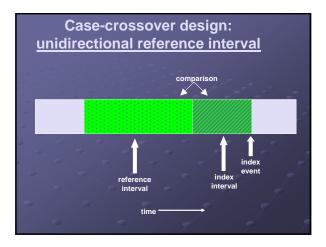
Multiple risk factor evaluation in multi-country
European population-based case-control study
<u>of Parkinson's disease *</u>

Ris	k factor	OR (95% CI)	
Eve	r smoked	0.5 (0.4-0.6)	2
Riv	er or well water source	1.2 (1.0-1.4)	
	ocked unconscious ime	2.5 (1.8-3.6)	
Sol	vents**	0.9 (0.7-1.1)	_
Pes	ticides**	1.4 (1.1-1.9)	
Iror	**	<mark>1.1</mark> (0.8-1.6)	
Mai	nganese**	0.9 (0.6-1.3)	

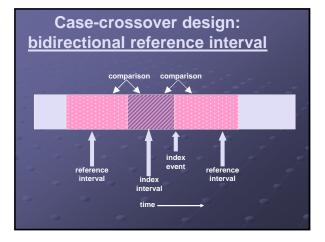
Advantages of case-control design

- Permits studies of rare disease
- Can have multiple case groups and common control group ("case-cohort" design)
- Obtaining data on confounders more feasible than in cohort studies

Limitations of case-control design


- Reliance on questionnaire data for exposures in community-based studies
- Selection of controls may be biased
- Unequal participation rates and data quality may differ for cases and controls

Case-crossover design


- "Case only" study, i.e., cases serve as their own controls (special type of matched case-control study)
- Comparisons of exposures during cases' "index" intervals with exposures during "reference" intervals

Index and reference intervals in <u>case-crossover design</u>

- Index interval: time period preceding disease (or injury) onset when exposures may have etiologic relevance
- Reference interval: time interval of typical exposure, usually preceding disease onset
 - Unidirectional (before index interval)
 - Bidirectional (before and after index interval)

Exposure	No. of subjects exposed at time of injury	Average no. of hours exposed in month prior to injury‡	No. of subjects exposed in month prior to injury	RR*	95% CI*
Jnusual performing equip/materials	161	4.5	276	11.0	9.4 to 12.8
Nearing gloves	216	53.1	771	0.4	0.3 to 0.5
Different work method	107	2.2	202	10.5	
Doing an unusual task	127	3.9	356	6.7	
Being distracted	147	5.6	558	5.3	4.6 to 6.1
Being rushed	290	29.2	769	2.4	2.1 to 2.7
eeling ill	25	2.4	263	1.9	1.3 to 2.8
RR, relative risk; CI, confidence inter The estimated average individual ha and takes into account individual diff	ours of exposu			ero hours	of each exposi

Advantages of case-crossover design (relative to conventional case-control design)

- Suitable for studies of acute onset outcomes
- Logical/convenient choice of controls
 (e.g., Who would controls be in a study of acute injuries? How would they be identified)
- Better control of confounding by fixed variables (e.g., medical history, genetics)

Cross-sectional design

Comparison of prevalence of disease by exposure level

- One time cross-sectional study
- Repeated measures survey (i.e., becomes cohort study)

		nptoms a <u>ch wastev</u>		
Endotoxin level (EU/mg/m3)	No. subjects	Lower resp. and skin symptoms	Flu-like symptoms	Upper resp. symptoms
<50 (ref)	141	1.0+	1.0	1.0
51 – 200	63	1.1 (0.5 – 2.4)	1.2 (0.6 – 2.3)	1.6 (0.9 – 3.0)
>200	12	1.8 (0.6 – 5.2)	2.0 (0.8 – 4.9)	1.8 (0.8 – 3.8)
		. Am J Ind Med 2 ed for age, sex, si		-

Advantages of cross-sectional <u>studies</u>

- Very suitable for studying symptoms, physiological variation (e.g., lung function)
- Direct contact with workers permits additional data collection (confounders, use of PPE, etc.)

<u>Limitations of cross-sectional</u> <u>studies</u>

- Generally limited to active workers workers who left may be most affected
- Possible selection bias (e.g., migration between jobs influenced by health status.

Repeated Measures Design

- Baseline measurements of exposure and health status (initial cross-sectional study)
- Repeated assessments of changes in health status in relation to changes in exposure

Validity and precision definitions

- <u>Bias</u>: difference between what study attempts to measure with what it actually measures (i.e., systematic error)
- Validity: extent to which bias is minimized
- <u>Precision</u>: The statistical stability of a measured value (e.g., relative risk)—the larger the study, the more precise it is

Confounding

 Definition: mixing of effects of exposure of interest with effects of extraneous factors

• Criteria:

- independent risk factor for health outcome of interest
- outcome or interest
- associated with exposure under study
- not intermediate in exposure/outcome pathway

Examples of confounding

- Demographic factors: age, gender, ethnicity
- Lifestyle exposures: smoking, diet, alcohol
- Personal characteristics: medical history
- Co-occurring occupational or environmental exposures (e.g., solvent mixtures)

Methods to control confounding

- Direct statistical adjustment when confounder data are available
- Stratification by confounder status
- Restriction of study to persons with single level of confounder (e.g., only non-smokers)
- Indirect assessments
 - Examine risks for other conditions related to confounder
 - Hypothetical calculation of confounder effects

Cum	ulative e	exposure (WLM)	
Years since	<u>1-2</u>	200	<u>>2</u>	<u>00</u>
first exposure	<u>Obs</u>	RR	<u>Obs</u>	RR
<20	0	0	4	20
<u>></u> 20	0	0	10	25

Selection bias

- Biased* choice of exposed or nonexposed groups in a cohort or crosssectional study,
- Or, biased** choice of cases or controls in a case-control study
- *Exposure groups should be selected without prior knowledge or expectation of health status
- **Cases and controls should be selected irrespective of exposure status

Healthy worker effect

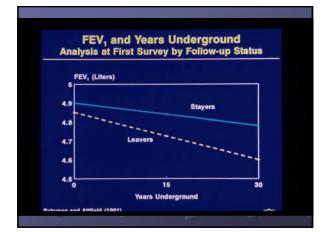
- <u>Definition</u>: typically lower mortality (or morbidity) in an occupational group than in the population-at-large (which includes persons too ill or disabled to work)
- Causes of HWE:
 - "Healthy" workers selected for employment (primary selection)
 - Adequate health needed to stay employed (secondary selection)

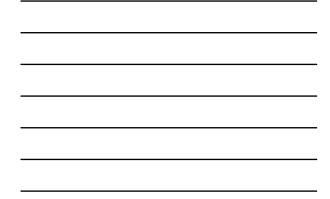
Healthy worker effect: aspects of selection bias and confounding

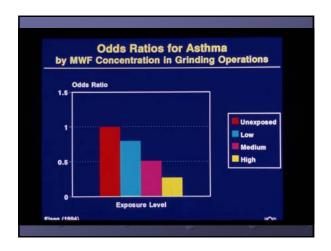
- <u>Selection bias</u>: <u>selection</u> of inappropriate comparison group (e.g., national population)
- <u>Confounding</u>: the index and comparison groups have different distributions of disease determinants (e.g., health status)

Cause-specific mortality among white male U.S. crude oil production workers, 1946-94*

Cause of death	Obs	SMR+
Cause of dealin	Obs	
All causes	4361	0.73
Arteriosclerosis heart disease	1489	0.74
Stroke	282	0.74
Non-malignant respiratory disease	299	0.68
Diabetes mellitus	36	0.41
All cancers	1080	0.83
Lung cancer	347	0.80


*Divine and Hartman (2000) Occup Environ Med 57:411-7 * Standardized mortality ratio, based on rates in U.S. white males, 1946-94


Healthy worker survivor effect


- <u>Definition</u>: Depletion of workforce due to loss of affected ("susceptible") workers
- <u>Net effect</u>: diminished ability to detect exposure/disease associations
- Causes:
 - Affected workers leave employment
 - Affected workers preferentially move from higher to lower exposed jobs

le	avin	g em	ployr	nent	as pr from <u>e yea</u>	Turk	ish	f
	1 month		3 months		6 months		12 months	
	leavers	stayers	leavers	stayers	leavers	stayers	leavers	stayers
Work- related lower resp sx	0/16 (0%)	5/157 (3%)	6/24 (25.%)	6/125 (5%)	3/17 (18%)	17/111 (15%)	0/17 (0%)	4/93 (4%)
Work- related upper resp sx	4/16 (25%)	50/157 (32%)	12/24 (50%)	49/125 (39%)	7/17 (41%)	49/111 (44%)	4/17 (24%)	32/93 (34%)

*Bakirici N, et al. (2006) Occup Environ Med 63:126-130.

	in Boston f	firefighters*	
Year	No. firefighters	Annual decline FVC (ml)	Annual decline FEV ₁ (ml)
1971	1768		
1972	1430	77	68
1974	1146	40	30
			Le la
NB: Expect	ed annual declines	of FVC, FEV ₁ ~25-	30 ml 🛛 🧹

